LLM SFT & Evaluation Scripts

The llm_sft/ directory contains scripts for supervised fine-tuning (SFT) data curation

Main Scripts

Arguments

All scripts support a rich set of command-line arguments. Here are the most important ones:

llm_sft/answer_eval.py

Arguments:


llm_sft/reflection_eval.py

Arguments:


llm_sft/image_description.py

Arguments:


Example Usage

Answer Evaluation:

bash
python -m llm_sft.answer_eval \
    --model Qwen/Qwen2.5-VL-7B-Instruct \
    --model_type remote \
    --platform VLLM \
    --input_path /path/to/your/data.jsonl \
    --image_dir /path/to/your/images

Reflection Evaluation:

bash
python -m llm_sft.reflection_eval \
    --model Qwen/Qwen2.5-VL-7B-Instruct \
    --model_type remote \
    --platform VLLM \
    --input_path /path/to/your/data.jsonl \
    --image_dir /path/to/your/images \
    --output_path /path/to/save/reflections.jsonl

Image Description Extraction:

bash
python -m llm_sft.image_description \
    --input_path /path/to/your/data.jsonl \
    --source cot100k \
    --output_path /path/to/save/image_descriptions.jsonl

Tips


← Back to Docs